If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-3n=48
We move all terms to the left:
n^2-3n-(48)=0
a = 1; b = -3; c = -48;
Δ = b2-4ac
Δ = -32-4·1·(-48)
Δ = 201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{201}}{2*1}=\frac{3-\sqrt{201}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{201}}{2*1}=\frac{3+\sqrt{201}}{2} $
| x=4/x=15/x+4 | | 5x+5+2x=100-2x | | 0.5x+(-1.5)=1.5x+(5) | | +2-5x=17 | | 5x+5-2x=100-2x | | 5x-3x-3=29 | | 6x2−13x+3=−3 | | 4x+24-3x=25 | | 48=6+2w | | 1x+(3)=1.5x+(-7) | | 184=6x-8 | | 18−5x=−42 | | 2x+10-12=4 | | 11/4+3/4r=163/24 | | 8x+(-3)=2x+(0) | | 3/2(v+3/2)=-7/4v-19/16 | | 4χ²+3x-10=0 | | 0x+(8)=2x+(0) | | 3/8(t)=13 | | 510=x-7 | | 1.5x+(-4)=0.5x+(4) | | 16x+(48-8x)=78 | | 3/4*y=17 | | 1.5x+(-4)=-0.5x+(4) | | 72=8•b | | 55/6=-5/2(3/2p-5/3 | | 2x+(-2)=1x+(-3) | | X^5+2x+7=0 | | 500=0.50x+300 | | 350=0.50x+300 | | 300=0.50x+300 | | 250=0.50x+300 |